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Abstract

We propose a system of rules for school geometry (Euclidean plane
geometry), which is designed to be a basis from which to draw explana-
tions of theorems for teaching purposes. The system describes a large
enough portion of the foundations of geometry so that core theorems
taught at school can be explained simply using deductive reasoning.
A core strategy is to replace formal logic with intuitive rules when
defining concepts. This strategy together with the natural language
presentation enables nontechnical explanations that represent a bal-
ance between pure deductive reasoning and geometric intuition, which
is appropriate for elementary education.

1 Introduction

The system of rules implements an approach whereby geometric concepts are
not mathematically defined using mathematical logic and constructs such as
sets. This contrasts particularly with axiomatizations of geometry (see, for
example, [6], [3], [1], [7], and [2]), where logic is used as a basis for the
existence of geometric concepts. In such axiomatic systems the aforemen-
tioned use of logic is characterised by a process of successive definition of
new concepts starting with a limited number of initial concepts. The alter-
native strategy that we present avoids explicit definitions and merely lists
intuitively true logical connections between various concepts that are not
mathematically defined. Although the existence of the concepts is implicit
in this way, the system allows for an explanation of the core theorems of
school geometry, because there are enough intuitively true rules in the sys-
tem to argue that the theorems taught in school hold. The use of logic is
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thus restricted so that it is used only to explain non-intuitive statements
from intuitive statements.

Our implementation of this idea is not unique, but represents an instance
of the aforementioned approach. It could be adapted to suit various audi-
ences. In particular the choice of intuitive rules represents a basis and one
could, for example, also declare that theorems about congruent triangles are
intutively true rules, incorporating them into the system so that they do not
require an explanation. Rules could be formulated by learners themselves
in the context of discovery learning (see, for example, the discussion in [4]).
The approach could also be adapted to teaching techniques that implement
local organisations of geometry (as described in [5]). However the rules, as
we presented them, represent a global system, and have been chosen as rules
that are intuitively obvious given the explanations presented alongside the
rules below.

The next section introduces the rules and includes explanations as to how
the rules can be seen to be intuitively true. The subsequent section contains
an analysis of the system, which includes an example of how the rules can
be used to explain a theorem of school geometry. The section following
this shows the extent to which the system characterises the Euclidean plane.
Following this we summarise the idea and our analysis.

2 The system of intuitive rules

The method starts with a thought experiment whereby one imagines two
points, the segment connecting the two points, the rays that are formed
by extending the segment (one in each direction) and the line formed by
extending in both directions. Then one imagines a sheet of paper and that
the paper is extended in all directions to form a plane. Points, segments,
rays, and lines are imagined as belonging to this plane. It is discussed that
closed means that the endpoints of segments and the starting point of rays
are part of the object whereas open means that they are not. Half-planes are
also discussed with the appropriate interpretation of closed versus open. The
thought experiment allows a learner to gain intuition about the Euclidean
plane so that he or she perceives the following rules as true.

Object rules

2



1. We consider one object called plane and objects such as points, lines,
open rays, closed rays, open segments, closed segments, open
half-planes, closed half-planes, and angles that lie on the plane.

2. Every object, except the point itself, contains many points.

Line rules

1. There is exactly one line that passes through two given points.

2. Two distinct lines have at most one point of intersection and they are
called parallel if they have no point of intersection. A line is said to
be parallel to itself.

3. For every line there is a point that does not lie on the line.

4. Given a line and a point there is exactly one line parallel to the first
line that passes through the point.

Remark 1 It is suggested that the one initially asserts that the last rule is
intuitively true, however that once the ideas have settled the possibility of
non-Euclidean geometries is discussed, so that the rule is seen as one option
among different possibilities equating to different geometries including
non-Euclidean geometries.

Segment rules:

1. An open segment connects two points called endpoints of the segment
and lies on the line that passes through its endpoints.

2. There is exactly one open segment that connects two given points.

3. The endpoints of an open segment do not lie on the open segment.

4. A closed segment consists of an open segments and its two endpoints.

5. A point lies between two other points if it lies on the open segment
that connects them.

6. Given three collinear points (meaning that they all lie on one line)
exactly one of the three lies between the other two.
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Ray and Half-plane rules:

1. A point on a line divides the line into two open rays called sides of
the point on the line such that two other points of the line lie in
different rays exactly when the initial point lies between them.

2. Every open ray is a side of a particular point on a particular line. A
closed ray consists of an open ray and its starting point.

3. A line divides the plane into two open half-planes called sides of the
line such that an open segment intersects the line exactly when its
endpoints lie in different half-planes.

4. Every open half-plane is the side of a unique line. A closed half-plane
consists of an open half-plane and the line it is a side of.

Angle rules:

1. An angle contains a point called the vertex and two distinct open rays
starting at the vertex called legs.

2. For two distinct open rays with the same starting point there are two
angles that have these rays as legs. A further distinct open ray with
the same starting point lies on exactly one of these angles.

Length rules:

1. Every segment has a unique length.

2. Given an open ray and a length there is a unique point on the ray
whose distance to the starting point of the ray equals the given length.

3. If point B lies between points A and C, then the distance between A
and C is the sum of the two distances between A and B and between
B and C, and the distance between A and C is longer than either of
the distances between A and B and between B and C.

4. Given an open segment and a natural number n larger than 1, one
can find n− 1 points on the open segment that divide it into n open
segments that each have the same length.
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5. The sum of the lengths of two sides of a triangle is longer than the
length of the third side.

Angle size rules:

1. Every angle has a unique size.

2. Given an open ray and an angle size there are exactly two angles with
the given size that have the open ray as a leg.

3. If an angle consists of two angles that share a vertex and a leg, but
otherwise have no points in common, then the sum of the angle sizes
of the two angles equals the size of the original angle. The size of each
of the two angles is smaller than the original angle.

4. Every angle can be divided into two angles of equal size that only
share a vertex and a leg. The shared leg is called the angle bisector.

Polygons and area rules:

1. A polygon consists of n > 2 distinct points called vertices and n open
segments called edges, each of which connects two of the vertices.
Each vertex is an endpoint of exactly two edges and none of the edges
intersect.

2. If two polygons share one edge and the two vertices of the edge, but
are otherwise on different sides of the line that passes through the
endpoints of the shared edge, then the sum of the areas of the two
polygons equals the area of the polygon consisting of all the vertices
and edges of both polygons except for the shared edge. The area of
each polygon is smaller than the area of the new polygon.

Remark 2 The aforementioned thought experiment can be extended so that
the learner perceives the next rules about motion as true. One can rotate,
translate, and flip over the paper in order to explain that the plane does not
inherently change, but that the objects assume new positions. In particular it
should be clear that, for example, the lengths of a segment equals the length
of the segment in its new position once it is translated, rotated, or reflected.

Motion rules:
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1. A translation, a rotation, or a reflection of the plane relates each
object with another object of the same type, which is called a
translation, rotation, or reflection of the original object. All other
relations involving the original objects hold when referring to the
moved objects including length of segments, size of angles, and area of
polygons.

2. Given two distinct ordered points there is exactly one translation such
that the first point lands on the second point.

3. No point remains in the same place if it is translated.

4. A rotation has one fixed point. It is referred to as a rotation about
this point.

5. Given two distinct ordered open rays with the same starting point,
there is one rotation about the starting point so that the first ray
lands on the second ray.

Note: It should be explained that the rotation about a point in a
particular direction of rotation is regarded as the same rotation about
the point as the rotation in the opposite direction of rotation through
an angle size that is 360◦ minus the original angle size . An
alternative would be to make a distinction between the direction of
rotation, but this carries with it the disadvantage that the group of
motions is later harder to define.

6. After a translation or rotation one can translate or rotate the plane
back to its original position.

7. A reflection about a line of a plane leaves the points on the line fixed,
but a point of the plane that is not on the line is reflected onto the
other side (half-plane) of the line.

8. After reflecting twice all objects land back at their starting positions.

Archimedean rule

Given a point, a translation, and a length, successive translation of
the point will result in a new point whose distance from the first point
is further than the given length.
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3 An analysis of the rules

As already mentioned, the rules describe intuitively true logical connections
amongst geometric concepts, but they do not define these concepts
explicitly. Some of the concepts are geometric objects and some are
concepts such as length, angle size, area, and motion, which do not
correspond to geometric objects. The idea of such a system is to exploit
intuitive connections between many different concepts, fitting them
logically together, so that the overall logic that governs, and which could be
used to define the Euclidean plane, is described through the totality of all
of the intuitively true rules. One should note that the principle of not
making mathematical definitions extends to the Euclidean plane itself,
because the Euclidean plane is also only mentioned by the rules, but it is
not defined by them.
A characteristic of the system is that it avoids mention of, for example, all
of the points of a segment or all of the rotations about a given point.
Rather the system is designed to allow deductive reasoning starting from
hypotheses that are finite in nature. This characteristic reflects the
essentially finite nature of school geometry, where figures consist of a finite
number of key points, segments, lines and so forth. As an example of this
role of finiteness we consider an explanation of the following theorem, a
standard theorem taken here as an example, whose hypotheses refer to two
triangles, each consisting of three points (the verticies), three open segments
(the edges), and three interior angles so that the theorem is essentially
finite in nature even if there are infinitely many points on each edge.

Theorem 1 (ASA Congruence) If 4ABC and 4DEF are triangles such
that α = δ, b = e and c = f , then 4ABC ≡ 4DEF .

Remark 3 We use the convention that verticies are denoted using the
uppercase latin alphabet, that an edge is denoted by the letter of the
lowercase latin alphabet corresponding to uppercase letter used to denote the
vertex opposite it, and that an interior angle at a vertex is denoted by the
letter of the lowercase greek alphabet corresponding to the uppercase letter
used to denote the vertex.

Explanation: If A 6= D then one can translate so that A lands on D,
because of the second rule of motion. Thus there is a possibly translated

triangle 4D′E ′F ′ such that D′ = A. If now the rays
−→
AB and

−−→
D′E ′ are not
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the same, one can rotate about D′ = A so that
−−→
D′E ′ lands on

−→
AB, because

of the fifth rule of motion. Thus one arrives at a possibly translated,

possibly rotated 4D′′E ′′F ′′ with the property that the rays
−→
AB and

−−−→
D′′E ′′

are the same. One now checks whether the point F ′′ is on the same side of
the line AB = D′′E ′′ as C and if not, then we reflect along AB. Thus we
arive at a possibly translated, possibly rotated, and possibly reflected
triangle 4D∗E∗F ∗, such that

−→
AB =

−−−→
D∗E∗ and such that C and F ∗ are on

the same side of AB = D∗E∗. The first rule of motion implies that each of
lengths of the edges and size of the interior angles of 4D∗E∗F ∗ is the same
as corresponding length or interior angle of 4DEF . Therefore it follows
from c = f and the second rule about lengths that E∗ = B. Further it
follows from the second rule about angle sizes that

−→
AC =

−−−→
D∗F ∗ so that a

further application of the second rule about lengths implies that F ∗ = C,
because b = e. Thus 4DEF lands on 4ABC, so that corresponding edges
have the same length and corresponding interior angles have the same size.

In the above explanation the finite set of concepts mentioned in the
hypotheses are expanded. For example, if A and D are in fact different
points, the first step is to use the rules of motion to conclude that there is a
translation, whereby D lands on A. In this way the hypotheses are
expanded to include the existence of this translation, but remain finite in
nature. The translation is then used in the next steps of the explanation,
which further expand the hypotheses in a finite way until enough
information is available so that the conclusion follows.
The explanation is not completely rigorous, because the proof draws on
intuition regarding what is meant by the interior angles of a triangle.
However, once 4DEF has landed on 4ABC the conclusion that the
interior angles correspond is intuitively clear. This reflects that the system
has been designed to allow deductive reasoning to be used as a tool of
explanation, but where a proof based on pure deduction through formal
logic is not the goal. As such the system represents a teaching philosophy
that is a compromise between pure logic and intuitive reasoning, which is
suitable for elementary education.
Logical independence and consistency are important characteristics of
axiomatic systems. However, as the concepts are not defined, but merely
governed by the proposed intuitive rules, it is not necessary to analyse these
characteristics. This simplification is appropriate for elementary education,
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because the system promotes the use of logic, but only insofar as to prove
statements from intuitively true statements, making the idea of logic and of
proof easier to understand.

4 The extent of the rules

An important question is whether the rules categorise the Euclidean plane
accurately. The answer lies in the following theorem, which indicates that
the rules can be used to argue any statement of school geometry provided
that a proof of the statement does not depend on the completeness of the
Euclidean plane.

Theorem 2 We consider a set E and collections of subsets, one collection
for each of the types of geometric object as mentioned in the rules except in
the cases of points and of the plane itself. We consider the rules as logical
statements, which, when referring to geometric objects, refer to a member of
the collection corresponding to that particular type geometric object, except
in the case of points where it refers to a member of the set and in the case
of the plane where it refers to the whole set. If the set E is complete with
respect to the naturally arising metrics, then it is equivalent as a metric
space to R2, and the concepts correspond to their standard definitions in the
metric space context.

In order to prove the theorem we consider how a real number can be
associated to a length using the rules. The way to do this is with the help
of a unit length and through the application of the length rules and the
Archimedean rule. This standard technique is to successively translate a
point using a translation corresponding to the unit length and to count the
number of translations until a further translation would result in the point
being further from its starting position than the length one wishes to
measure. This yields the whole portion of the real number corresponding to
the length as measured by the unit. The full decimal expansion of the
number is found by applying the same technique successively to the
remaining length measuring with one tenth of the unit length (the existence
of one tenth of the length is given by the fourth length rule). This yields a
decimal representation of a real number and the real number is
subsequently associated to the length in question. The motion rules
guarantee that the real number does not depend on the choice of point or
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translation, making the definition well-defined. The association of the real
numbers to lengths in this way is consistent with the third length rule
about the sum of two lengths and the concepts of longer. The triangle
inequality rule (fifth length rule) implies that the distance between two
points as measured by a particular unit is a metric on the set E. With this
metric E becomes a metric space.

Remark 4 A similar technique could be used to associate a degree to each
angle size in a manner consistent with the angle size rules. One would use
the angle bisector instead of the fourth rule for lengths that allows a length
to be divided into ten equal lengths. Furthermore, one can associate the area
of a rectangle with the product of its length and breadth (each being real
numbers measured by the same unit). This association is consistent with the
rules governing the sum of areas (second rule about polygons and area).
Furthermore, the theorem of Pythagoras follows from standard arguments
based on area considerations.

The task is to create a metric-preserving bijection between E and R2. Ones
takes two points in E, whose existence follows from the object rules. We
then consider the line through these points and a point not on this line,
whose existences follow from the line rules. We then reflect the point about
the line so that the point not on the line is reflected onto the other side of
the line (see rules of motion). The line through the point and its reflection
is perpendicular, because the size of angles are preserved by reflection. so
that we have perpendicular axes. We choose a positive and a negative side
of the origin for each axis and assign a real number to each point on the
axes by measuring its distance to the origin using a metric defined by a
particular unit length (as described above). We assign coordinates to each
point on E by reflecting the point along each axis and taking each
coordinate as the real number corresponding to the number associated with
the intersection point with the corresponding axis. In this way we define a
map from E to R2. The map is well defined because of the uniqueness of
perpendiculars (a characteristic that follows easily from the rules). The
map is injective, because if two dinstinct points in E map to the same
coordinates in R2 then this would correspond to two rectangles with the
same length and breadth, with one corner being the origin and whose
opposite corners are different but in the same quadrant. This cannot be
because of the uniqueness of perpendiculars and the uniqueness of
intersection of lines (second rule about lines). The map is surjective,
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because the completeness of E yields a full set of real numbers on each axis,
so that a point in E can be found corresponding to each coordinate of R2

using the appropriate limiting process. The metric is preserved by the map,
because of the theorem of Pythagoras, so that it follows that the metric
spaces are equivalent. That each of the concepts mentioned in the rules
correspond through the map to the concept as per its usual definition in R2

follows from standard analysis.

5 Summary

The use of intuitively true rules as a starting point for explanations of the
theorems of school geometry allows an argument to be both simple and, to
a large extent, mathematically rigorous. The reason is that the system has
enough logical rules to categorise the Euclidean plane up to analytic
completeness. This allows one to teach Euclidean geometry by referring to
geometric concepts, but without the technicalities involved in defining these
concepts using mathematical logic and mathematical constructs such as
sets.
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